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The Interface Between Distributed Operating System
and High-Level Programming Language

Michael L. Scott

Computer Science Department
University of Rochester
Rochester. NY 14627

ABSTRACT

A distributed operating system provides a process abstraction and primitives for communi-
cation between processes. A distributed programming language regularizes the use of the
primitives, making them both safer and more convenient. The level of abstraction of the
primitives, and therefore the division of labor between the operating system and the
language support routines, has serious ramifications for efficiency and flexibility. Experi-
ence with three implementations of the LYNX distributed programming language suggests
that functions that can be implemented on either side of the interface are best left to the
language run-time package.

1. Introduction

Recent years have seen the development of a large number of distributed programming
languages and an equally large number of distributed operating systems. While there are excep-
tons to the rule, it is generally true that individua! research groups have focused on a single
language. a single operating system. or a single language/O.S. pair. Relatively little attention has
been devoted to the relationship between languages and O.S. kernels in a distributed setting.

Amoeba [16], Demos-MP [17], Locus [27]. and the V kernc! [8] are among the better-known
distributed operating systems. Each by-passes language issues by relving on a simple library-
routine interface to kernel communication primitives. Eden [6] and Cedar [25] have both devoted a
considerable amount of attention to programming language issues. but each is very much a single-
language system. The Accent project at CMU [18] 1s perhaps the only well-known effort to support
more than one programming language on a single underlyving kernel. Even so, Accent is only able
to achieve its multi-lingual character by insisting on a single. universal model of interprocess com-
munication based on remote procedure calls [12]. [.anguages with other models of process interac-
tion are not considered.

In the language community. it is unusual to find implementations of the same distributed
programming language for more than one operating system, or indeed for any existing operating
system. Dedicated, special-purpose kemels are under construction for Argus [15], SR {1.2]. and
NIL [23.24). Several dedicated implementations have been designed for Linda [7.11]. No distri-
buted implementations have yet appeared for Ada [26).

At the University of Wisconsin, this work was supported in part by NSF grant number MCS-8105904.
DARPA contract number N0014-82-C-2087, and a Bell Telephone Laboratories Doctoral Scholarship. At the
University of Rochester. the work is supported in part by NSF grant number DCR-8320136 and DARPA con-
tract number DACA76-85-C-0001.

This paper was presented at the /986 International Conference on Parallel Processing, St. Charles. IL.
20 August 1986.

X

P

P —

v Cdes

. - l )
G oror ]
f
!

:/;_\)A;‘qi

HAJ_/EE_L__ _ -: ’

L)
»
w

'.‘!
.'\\.\\




v N WO

e g

b an e am o o f 4 T

If parallel or distributed hardware is to be used for general-purpose computing, we must
eventually leasn how to support multiple languages efficiently on a single operating system.
Toward that end. it is worth considering the division of labor between the language run-time pack-
age and the underlying kernel. Which functions belong on which side of the interface? What is
the appropriate level of abstraction for universal primitives? Answers to these questions will
depend in large part on experience with a variety of language/O. S. pairs.

This paper reports on implementations of the LYNX distributed programming language for
three existing, but radically different. distributed operating systems. To the surprise of the imple-
mentors, the implementation effort turned out to be substantally easier for kernels with low-level
primitives. If confirmed by similar results with other languages. the lessons provided by work on
LLYNX should be of considerable value in the design of future systems.

The first implementation of LYNX was constructed during 1983 and 1984 at the University
of Wisconsin. where it runs under the Charlotte distributed operating system {4. 10] on the Crystal
multicomputer [9]. The second implementation was designed. but never actually built, for Kepecs
and Solomon's SODA [13,14]. A third implementation has recently been released at the University
of Rochester, where it runs on BBN Butterfly multiprocessors [S] under the Chrysalis operating sys-
temn.

Section 2 of this paper summarizes the features of 1 YNX that have an impact on the ser-
vices needed from a distributed operating system kernel. Sections 3. 4. and § describe the three
LYNX implementations. comparing them one to the other. The ﬁndl section discusses possible les-
sons 1o be learned from the comparison.

2. LYNX Overview

The LYNX programming language is not itself the subject of this article. Language features
and their rationale are described in detail elsewhere [20,21.22]. For present purposes. it suffices o
say that LYNX was designed to support the loosely-coupled style of programming encouraged by 4
distributed operating system. Unlike most existing languages. LYNX extends the advantages of
high-level communication facilities to processes designed in isolation, and compiled and loaded at
disparate times. LYNX supports interaction not only between the pieces of a multi-process appli-
cation. but also between separate applications and between user programs and long-lived system
Servers.

Processes in LYNX execute in parallel. possibly on separate processors. There is no provi-
ston for shared memory. Interprocess communication uses a mechanism similar to remote pro-
cedure calls (RPC), on virtual circuits called links. Links are two-directional and have a single pro-
cess at each end. Each process may be divided into an arbitrary number of threads of control, but
the threads execute in mutual exclusion and may be managed by the language run-time package.
much like the coroutines of Modula-2 (28].

2.1. Communication Characteristics

(The following paragraphs describe the communication behavior of LYNX processes. The
description does not provide much insight into the way that LYNX programmers think about their
programs. The intent is to describe the externally-visible characteristics of a process that must be
supported by kernel pnmities.)

Messages in LYNX are not received asynchronously. They are queued instead. on a link-
by-link basis. Each link end has one queue for incoming requests and another for incoming
replies. Messages are received from a queue only when the queue is open and the process that
owns its end has reached a well-defined block point. Request queues may be opened or closed
under explicit process control. Reply queues are opened when a request has been sent and a reply
is expected. The set of open queues may therefore vary from one block point to the next.

A blocked process waits until one of is previously-sent messages has been received. or unul
an incoming message is available in at least one of its open queues. In the latter case. the process
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figure 1: link moving at both ends

chooses a non-empty queue. receives that queue’s first message, and executes through to the next
block point. For the sake of fairness. an implementation must guarantee that no queue is ignored
forever.

Messages in the same queue are received in the order sent. Each message blocks the send-
ing coroutine within the sending process. The process must be notified when messages are recencd
in order to unblock appropriate coroutines. It is therefore possible for an implementation to rels
upon a stop-and-wait protocol with no actual buffering of messages in transit. Request and reph
quaues can be implemented by lists of blocked coroutines in the run-time package for each sending
process.

The most challenging feature of links. from an implementor’s point of view, is the provision
for moving their ends. Any message. request or reply. can contain references to an arbitran
number of link ends. [.anguage semantics specify that receipt of such a message has the side effect
of moving the specified ends from the sending process to the recenver. The process at the far end
of each moved link must be oblivious to the move. even if it is currently relocating its end as well.
In figure 1. for example. processes A and [) are moving their ends of link 3. independently. in such
a way that what used to connect A to [ will now connect Bto C.

It is best to think of a link as a flexible hose. A message put in cne end will eventually be
delivered to whatever process happens to be at the other end. The queues of available but un-
received messages for each end are associated with the link itself. not with any process. A moved
link may therefore (logically at least) have messages inside. waiting to be received at the moving
end. In keeping with the comment above about stop-and-wait protocols, and to prevent complete
anarchy, a process is not permitted to move a link on which it has senf unreceived messages. or on
which it owes a reply for an already-received request.

2.2. Kernel Requirements

To permit an implementation of [.Y NX, an operating system kernel must provide processes.
communication primitives, and a naming mechanism that can be used to build links. The major
questions for the designer are then 1) how are links to be represented? and 2) how are RPC-stvle
request and reply messages to be transmitted on those links? It must be possible to move hnks
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without losing messages. In addition. the termination of a process must destroy all the links
attached to that process. Any attempt to send or receive a message on a link that has been des-
troyed must fail in a way that can be reflected back into the user program as a run-time exception.

3. The Charlotte Implementation

3.1. Overview of Charlotte

Charlotte {4, 10] runs on the Crystal multicomputer [9]. a collection of 20 VAX 11/750 node
machines connected by a 10-Mbit/second token rning from Proteon Corporation.

The Charlotte kernel is replicated on each node. It provides direct support for both
. processes and links. Charlotte links were the original mouvation for the circuit abstraction in
LYNX. As in the language, Charlotte links are two directional. with a single process at each end.
As 1n the language. Charlotte links can be created. destroyed. and moved from one process to
another. Charlotte even guarantees that process termination destrovs all of the process’s hinks. 1t
was orginaliy expected that the implementation of LYNX-style interprocess communication would
be almost trivial. As described in the rest of this section, that expectation turned out to be nane.

Kernel calls in Charlotte include the following:

Makel ink (var endl. end? : link)
Create a link and return references t its ends.

Destroy {myvend : link)
Destrov the link with a given end.

Send (L : link: buffer ; address: length : integer: enclosure : link)
Start a send activity on a given link end. optionally enclosing one end of some other link.

Receive (L : link: buffer : address: iength : integer)
Start a receive activity on a given link end.
f Cancel (1. : link; d : direction)
Attempt to cancel a previously-started send or receive activity.
Wait (var e : description)
Wait for an activity to complete, and return its description (link end. direction. length, enclo-

sure).
q All calls return a status code. All but Wair are guaranteed to complete in a bounded amount of
. time. Wait blocks the caller until an activity completes.

The Charlotte kernel matches send and receive activities. It allows onlv one outstanding
activity in each direction on a given end of a link. Completion must be reported by H uir before
another similar activity can be started.

3.2. Implementation of LYNX

The language run-time package represents every LYNX link with a Charlotte link. It uses
the activities of the Charlotte kernel to simulate the request and reply queues described in section
2.1. It starts a send activity on a link whenever a process attempts to send a request or reply mes-
sage. It starts a receive activity on a link when the corresponding request or reply queue is opened.
if both were closed before. It attempts to cancel a previous-started receive activity when a process
closes its request queue. if the reply queue 1s also closed. The multplexing of request and repls
queues onto receive activities was a major source of problems for the implementation effort. A
second source of problems was the inability to enclose more than one link in a single Charlotte
message.
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3.2.1. Screening Messages For the vast majority of remote operations, only two Charlotte mes-
sages are required: one for the request and one for the reply. Complications arise. however. in a
number of special cases. Suppose that process A requests a remote operation on link L.

Process B receives the request and begins serving the operation. A now expects a reply on l. and
starts a receive activity with the kernel. Now suppose that before replying B requests another
‘ operation on ., in the reverse direction (the coroutine mechanism mentioned in section 2 makes

| such a scenario entirely plausible). A will receive B's request before the reply 1t wanted Since .
may not be willing to serve requests on L at this point in time (its request queue is closed). B is not
able to assume that its request is being served simply because A has received it. 4

A similar problem arises if A opens its request queue and then closes it again. before reach-

} ing a block point. In the interests of concurrency, the run-time support routines will have posted a -
| Receive with the kernel as soon as the queue was opened. When the queue is closed. they will N
attempt to cancel the Receive. If B has requested an operation in the meantime. the Cance/ will A

\ fail. The next time A's run-time package calls Wair. it will obtain notification of the request from
B. a message it does not want. Delaying the start of receive activities until a block point does not

| help. A must still start activities for all its open queues. It will continue execution after a message
| is received from exactly one of those queues. Before reaching the next block point. it may change 4
the set of messages it is willing to receive.

{t 1s tempting to let A buffer unwanted messages until it is again willing to receive from B.
but such a solution is impossible for two reasons. First. the occurrence of excepuons in I YNX can
require A to cancel an outstanding Send on L. If B has already received the message (inadier-
tently) and is buffering it internally, the Cancel cannot succeed. Second. the scenario in which A \
receives a request but wants a reply can be repeated an arbitrary number of times. and A cannot be
expected to provide an arbitrary amount of buffer space.

A must return unwanted messages (0 B. [n addition to the request and reply messages
needed in simple situations, the implementation now requires a retry message Retry 15 a negatise
acknowledgment. It can be used in the second scenario above, when A has closed its request -
queue after receiving an unwanted message. Since A will have no Receive outstanding the re-sent
message from B will be delaved by the kernel until the queue is re-opened. -

In the first scenario, unfortunately. A will still have a Receive posted for the reply it wants
from B. If A simply returned requests to B in retry messages, it might be subjected to an arbitrary
number of retransmissions. To prevent these retransmissions we must introduce the forbid and
allow messages. Forbid denies a process the right to send requests (it is still free to send replies).
Allow restores that right. Retry is equivalent to forbid followed by allon. It can be considered an
optimization for use in cases where no replies are expected. so retransmitted requests will be
delayed by the kernel.

VAL

Both forbid and retry return any link end that was enclosed in the unwanted message. A
process that has received a forbid message keeps a Receive posted on the link in hopes of receiving
an allow message.! A process that has sent a forbid message remembers that it has done so and
sends an allow message as soon as it is either willing to receive requests (its request queue is open)
or has no Receive outstanding (so the kernel will delay all messages).

R R P IIE R

! This of course makes it vulnerable to receiving unwanted messages itself.
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figure 2: link enclosure protocol

3.2.2. Moving Multiple Links To move more than one link end with a single LYNX message.
a request or reply must be broken into several Charlotte messages. The first packet contains non-
link data. together with the first enclosure. Additional enclosures are passed in empty enc messages
(see figure 2). For requests, the receiver must return an explicit goahead message after the first
packet so the sender can tell that the request is wanted. No goahead is needed for requests with
zero or one enclosures, and none is needed for replies, since a reply is always wanted.

One consequence of packetizing LYNX messages is that links enclosed in unsuccessful mes-
sages may be lost. Consider the following chain of events:

a) Process A sends a request to process B. enclosing the end of a link.

b) B receives the request unintentionally: inspection of the code allows one to prove that only
replies were wanted.

c) The sending coroutine in A feels an exception, aborting the request.

d) B crashes before it can send the enclosure back to A in a forbid message. From the point of
view of language semantics. the message to B was never sent. yet the enclosure has been lost.
Under such circumstances the Charlotte implementation cannot conform to the language
reference manual.

The Charlotte implemen.ation also disagrees with the language definition when a coroutine
that is waiting for a reply message 1s aborted by a local exception. On the other end of the link the
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server should feel an exception when 1 attempts to send a no-longer-wanted reply. Such excep-
tions are not provided under Charlotte because they would require a final, top-level acknowledg-
ment for reply messages. increasing message traffic by 50%.

3.3. Measurements

The language run-ume package for Charlotte consists of just over 4000 lines of C and 200
lines of VAX assembler. compiling to about 21K of object code and data. Of this total, approxi-
mately 45% is devoted to the communication routines that interact with the Charlotte kernel.
including perhaps SK for unwanted messages and multiple enclosures. Much of this space could
be saved with a more appropriate kernel interface.

A simple remote operation (no enclosures) requires approximately 57 ms with no data
transfer and about 65 ms with 1000 bytes of parameters in both directions. C programs that make
the same series of kerne! calls require 55 and 60 ms. respectively. In addition to being rather slow,
the Charlotte kernel is highly sensitive to the ordering of kernel calls and to the interleaving of
calls by independent processes. Performance figures should therefore be regarded as suggestve.
not definitive. The difference in timings between [.YNX and C programs is duc to etforts on the
part of the run-time package to gather and scatter parameters, block and unblock coroutines estab-
lish default exception handlers, enforce flow control. perform type checking. update tables for
enclosed links. and make sure the links are valid.

4. The SODA Implementation

4.1. Overview of SODA

As part of his Ph. [). research [13.14]. Jonathan Kepecs set out to design a minimal kernel
for a multicomputer. His “Simplified Operating systemn for Distnibuted Applications”™ might better
be described as a communicatuons protocol for use on a broadcast medium with a ven large
number of heterogeneous nodes.

Each node on a SODA network consists of two processors: a client processor and an associ-
ated kernel processor. The kernel processors are all alike. They are connected to the network and
communicate with their client processors through shared memory and interrupts. Nodes are
expected o be more numerous than processes, so client processors are not multi-programmed

Every SODA process has 4 unique id. It also advertises a collection of names v which 1t 1s
willinz to respond. Therce is a kerne! call to generate new names. unique orei space 4and ume. The
discover kernel call uses unreliable broadcast in an attempt to find a process thet has advertised a
given name.

Processes do not necessarily send messages, rather they request the transter of data. A pro-
cess that is interested in communication specifies a name, a process id. a small amount of out-of-
band information. the number of bytes it would like to send and the number it 15 willing to
receive. Since either of the last two numbers can be zero, a process can request to send data.
receive data, neither, or both. The four varieties of request are termed put. get, signal. and
exchange, respectively.

Processes are informed of interesting events by means of software interrupts. Each process
establishes a single handler which it can close temporarily when it needs to mask out interrupts. A
process feels a software interrupt when its id and one of its advertised names are specified in a
request from some other process. The handler is provided with the id of the requester and the
arguments of the request, including the out-of-band informauon. The interrupted process is free to
save the information for future reference

At any time, a process can accept a request that was made of it at some time in the past.
When it does so. the request is completed (data 1s transferred in both directions simultaneoushy).
and the requester feels a software interrupt informing 1t of the completion and providing it with 4
small amount of out-of-band information from the accepter. 1 ike the requester. the accepter
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specifies buffer sizes. The amcunt of data transferred in each direction is the smaller of the
specified amounts.

‘ Completion interrupts are queued when a handler is busy or closed. Requests are delayved:

the requesting kernel retries penodically in an attempt to get through (the requesting user can
proceed). If a process dies before accepting a request. the requester feels an interrupt that informs
it of the crash.

4.2. A Different Approach to Links

A link in SODA can be represented by a pair of unique names. one for each end. A process
that owns an end of a link advertises the associated name. Every process knows the names of the
| link ends it owns. Every process keeps a hint as to the current location of the far end of each of 1t
links. The hints can be wrong. but are expected to work most of the time.

| A process that wants to send a 1. YNX message. either a request or a reply, inrtiates a SO
put to the process it thinks is on the other .nd of the link. A process moves link ends by enclosing
their names in a message. When the message s SODA-accepted by the receiver. the ends are
understood to have moved. Processes on the fixed ends of moved links will have incorrect hints.

A process that wants to receive a I.YNX message, either a request or a reply. mnitiates 4

SODA signal to the process it thinks 15 on the other end of the link. The purpose of the signal 15
allow the aspiring receiver to tell if 1ts link is destroyed or if its chosen sender dies. In the latter
case. the receiver will feel an interrupt informing it of the crash. In the former case. we require a
process that destroys a link to accept any previously-posted status signal on its end, mentioning the
» destruction in the out-of-band information. We also require it to accept any outstanding put
b . . . . . .
; request, but with a zero-length buffer, and again mentioning the destruction in the out-of-band
: information. After clearing the signals and puts. the process can unadvertise the name of the end
; and forget that it ever existed.
F

Suppose now that process A has a link L to process C and that it sends its end to process B.

message
____________ >

& 00C

before after

If C wants to send or receive on L, but B terminates after receiving L from A, then C must be
informed of the termination so it knows that L has been destroyed. C will have had a SODA
request posted with A. A must accept this request so that C knows to watch B instead. We there-
fore adopt the rule that a process that moves a link end must accept any previously-posted SODA
request from the other end, just as it must when it destroys the link. It specifies a zero-length
buffer and uses the out-of-band information to tell the other process where it moved its end. In
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the above example, C will re-start its request with B instead of A.

The amount of work involved in moving a link end is very small. since accepting a request
does not even block the accepter. More than one link can be enclosed in the same message with
no more difficulty than a single end. [f the fixed end of a moving link is not in active use. there is
no expense involved at all. In the above example. if C receives a SODA request from B. it will
know that L has moved.

The only real problems occur when an end of a dormant link is moved. If our example. if L
is first used by C after it 1s moved. C will make a SODA request of A. not B. since its hint is out-
of-date. There must be a way to fix the hint If each process keeps a cache of links it has known
about recently, and keeps the names of those links adverused. then A mayv remember it sent L to
B. and can tell C where it went. [f \ has forgotten. € can use the discover command in an attempt
to find a process that knows about the far end of 1..

A process that is unable to find the far end of a link must assume it has been destroved. If
L exists. the heuristics of caching and broadcast should suffice to find it in the vast majority of
cases. If the failure rate 15 comparable to that of other “acceptable™ errors. such as garbled mes-
sages with “valid™ checksums. then the heuristics may indeed be all we ever need.

Without an actual implementation to measure, and without reasonable assumptions about
the reliability of SODA broadcasts. it is impossible to predict the success rate of the heuristics. The
SODA discover primitive might be especially strained by node crashes, since they would tend
precipitate a large number of broadcast searches for lost links. If the heuristics failed too often. 4
fall-back mechanism would be needed.

Several absolute algorithms can be devised for finding missing links. Perhaps the simples:
looks like this:

e  Every process advertises a freeze name. When C discovers its hint for 1. 15 bad. it posts 4
SODA request on the freeze name of every process currenty in existence (SODA makes 1t
easy to guess their ids). It includes the name of L in the request.

e  FEach process accepts a freesze request immediately, ceases execution of everving but its own
searches (if any). increments 4 counter. and posts an unfreeze request with €. If it has a hint
for 1., it includes that hint in the freeze accept or the unfreese request.

e  When C obtains a new hint or has unsuccessfully quened everyone. it accepts the unfreese
requests. When a frozen process feels an interrupt indicating that its unfrecse request has
been accepted or that € has crashed. it decrements its counter. If the counter hits zero. it con-
unues execution. The existence of the counter penmiits multiple concurrent searches.

This algorithm has the considerable disadvantage of bninging every I YNX process in existence to
temporary halt. On the other hand. it is simple, and should only be needed when a node crashes
or a destroyed link goes unused for so long that everyone has forgotten about it

4.2.1. Potential Problems As mentioned in the introduction, the SODA version of [ YNX was
designed on paper only. An actual implementation would need to address a number of potential
problems. To begin with, SODA places a small. but unspecified. limit on the size of the out-of-
band information for request and accepr. If all the self-descriptive information ncluded in mes-
sages under Charlotte were to be provided out-of-band. a minimum of about 48 bits would be
needed. With fewer bits available, some informaticn would have to be included in the messages
themselves, as in Charlotte.

A second potential problem with SODA involves another unspecified constant: the permissi-
ble number of outstanding requesis between a given pair of processes. The implementation
described in the previous section would work easily if the limit were large enough to accommodate
three requests for every link between the processes (a LYNX-request put. a LYNX-reply pur. and 4
status signal). Since reply messages are alwayvs wanted (or can at least be discarded 1f unwanted).
the implementation could make do with two outstanding requests per link and a single extra tor
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renlies. Too small a imit on vutstanding requests would leave the possibility of deadlock when
many links connect the same pair of processes. In practice, a limit of a half a dozen or so is
unlikely to be exceeded (it implics an improbable concentration of simultaneously-active resources
in a single process). but there 18 no way to reflect the limit to the user in a semantically-meaningful
way. Correctness would start to depend on global characteristics of the process-interconnection
graph.

4.3. Predicted Measurements

Space requirements tor run-ume support under SODA would reflect the lack of special cases
for handling unwantcd messages and multiple enclosures. Given the amount of code devoted to
such problems in the Charlotte implementation, it seems reasonable 10 expect a savings on the
order of 4K bytes.

For simple messages, run-time routines under SODA would need to perform most of the
same functions as their counterparts for Charlotte. Preliminary results with the Butterfly imple-
mentation (described in the following section) suggest that the lack of special cases might save
some time in conditional branches and subroutine calls, but relatively major differences in run-time
package overhead appear to be unlikely.

Overall performance. including kernel overhead. i< harder to predict. Charlotte has a con-
siderable hardware advantage: the only implementation of SODA ran on a collecion of PDP-
11/723’s with a 1-Mbit/second CSMA bus. SODA. on the other hand, was designed with speed 1in
mind. Experimental figures reveal that for small messages SODA was three times as fast as Char
lotte.2 Charlotte programmers made a deliberate decision to sacrifice efficiency in order to keep the
project manageable. A SODA version of | YNX might well be intrinsically faster than a compar-
able version for Charlotte.

5. The Chrysalis Implementation

5.1. Overview of Chrysalis

The BBN Butterfly Parallel Processor [5] is a 68000-based shared-memory multiprocessor.
The Chrysalis operating svstem provides primitives, many of them in microcode. for the manage-
ment of system abstractions Among these abstractions are processes. memory objects. event
blocks. and dual queues.

Each process runs in an address space that can span as many as one or two hundred
memory objects. Each memory object can be mapped into the address spaces of an arbitrary
number of processes. Synchronization of access to shared memory 1s achieved through use of the
event blocks and dual queues.

An event block is similar to a binary semaphore, except that 1) a 32-bit datum can be pro-
vided to the V operation, to be returned by a subsequent P, and 2) onlv the owner of an event
block can wait for the event to be posted. Any process that knows the name of the event can per-
form the post operation. The most common use of event blocks is in conjunction with dual
queues.

A dual queue is so named hecause of its ability to hold either data or event block names. A
queue containing data is a simple bounded buffer, and enqueue and dequeue operations proceed as
one would expect. Once a queue becomes empty. however, subsequent dequeue operations actu-
ally enqueue event block names, on which the calling processes can wait. An enqueue operation on
a queue containing event block names actually posts a queued event instead of adding its datum to
the queue.

* The difference is less dramatic for larger messages: SODA's slow network exacted a heavy toll. The
figures break even somewhere between 1K and 2K bytes.
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5.2. A Third Approach to Links

In the Butterfly implementation of LYNX, every process allocates a single dual queue and
event block through which to receive notifications of messages sent and received. A link 1s
represented by a memory object. mapped into the address spaces of the two connected processes.
The memory object contains buffer space for a single request and a single reply in each direction.
It also contains a set of flag bits and the names of the dual queues for the processes at each end of
the link. When a process gathers a message into a buffer or scatters a message out of a buffer into
local variables. it sets a flag in the link object (atomically) and then enqueues a notice of its activity
on the dual queue for the process at the other end of the link. When the process reaches a block
point it attempts to dequeue a notice from its own dual queue, waiting if the queue is empty.

As in the SODA implementation, link movement relies on a system of hints. Both the dual
queue names in link objects and the notices on the dual queues themselves are considered to be
hints. Absolute information about which link ends belong to which processes is known only to the
owners of the ends. Absolute information about the availability of messages in buffers is contained
only in the link object flags. Whenever a process dequeues a notice from its dual queue it checks
to see that it owns the mentioned link end and that the appropriate flag is set in the corresponding
object. If either check fails, the notice 1s discarded. Fvery change to a flag is eventually reflected
by a notice on the appropriate dual qucue but not every dual queue notice reflects a4 change to a
flag. A link 1s moved by passing the (address-space-independent) name of its memory object in a
message. When the message 1s received. the sending process removes the memory object from its
address space. The receiving process maps the ubject nro 1ts address space. changes the informa-
tion in the object to name its own dual queuc and /nen inspects the flags. It enqueues notices on
its own dual queue for any of the flags that are s¢

Primitives provided by Chnsalis make atomic changes to flags extremely inexpensive.
Atomic changes to quantities larger than 16 bits (including dual queue names) are relatively costly.
The recipient of a moved link therefore writes the name of its dual queue into the new memon
object in a non-atomic fashion. [t is possible that the process at the non-moving end of the link
will read an invalid name. but only affer setting flags. Since the recipient completes tts update of
the dual-queue name befure inspecting the flags. changes are never overlooked.

Chrysalis keeps a reterence count for each memory object. To destroy a link. the process at
either end sets a flag bit in the link object. enqueues a notice on the dual queue for the process at
the other end. unmaps the link object from its address space. and informs Chrysalis that the object
can he deallocated when its reference count reaches zero. When the process at the far end
dequeues the destruction notice from its dual queue. it confirms the notice by checking it against
the appropriate flag and then unmaps the link object. At this point Chrysalis notices that the refer-
¢nce count has reached zero, and the object is reclaimed.

Before terminating, each process destroys all of its links. Chrysalis allows a process to catch
all exceptional conditions that might cause premature termination. including memory protection
faults, so even erroneous processes can clean up their links before going away. Processor failures
are currently not detected.

5.3. Preliminary Measurements

The Chrysalis implementation of | YNX has only recently become available. [t consists of
approximately 3600 lines of C and 200 lines of assembler, compiling to 15 or 16K bvtes of object
code and data on the 68000. Both measures are appreciably smaller than the respective figures for
the Charlotte implementation.

Message transmission times are abo faster on the Butterflv. by more than an order of magni-
tude. Recent tests indicate that a simple remote operation requires about 2.4 ms with no data
transfer and about 4.6 ms with 1000 bytes o1 parameters in both directions. Code tuning and pro-
tocol optimizauons now under development arc hkely to improve both figures by 30 to 40%.
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6. Discussion

Even though the Charlotte kernel provides a higher-level interface than does either SODA
or Chrysalis, and even though the communication mechanisms of LYNX were patterned in large
part on the primitives provided by Charlotte. the implementations of I YNX for the latter two sys-
tems are smaller. simpler. and faster. Some of the difference can be attributed to duplication of
effort between the kernel and the language run-time package. Such duplication is the usual target
of so-called end-to-end arguments [19]. Among other things. end-to-end arguments observe that
each level of a lavered sofiware system can only eliminate errors that can be described in the con-
text of the interface to the level above. Overall reliability must be ensured at the application level.
Since end-to-end checks generally catch all errors, low-level checks are redundant. They are
justified only if errors occur frequently enough to make early detection essential.

LYNX routines never pass Charlotte an invalid link end. They never specify an impossible
buffer address or length. They never try to send on a moving end or enclose an end on itself. To
a certain extent thev provide their own top-level acknowledgments, in the form of goahead. retry.
and forbid messages. and in the confirmation of operation names and types implied by a reply
message. Theyv would provide additional acknowledgments for the replies themselves if they were
not so expensive. For the users of LY NX. Charlotte wastes time by checking these things itself.

Duplicauon alone. howeser. cannot account for the wide disparity in complexity and
efficiency between the three L YNX mmpleinentations. Most of the differences appear 10 be due )
the difficulty or adapung higher-level Charlotte primitives to the needs of an application for which
they are almost. but not quite, correct. In comparison to Charlotte, the language run-time packages
for SODA and Chrysalis can

(1) move more than one link 1n a message
(2) be sure that all received messages are wanted
(3) recover the enclosures in aborted messages

(4) detect all the exceptional conditions described in the language definition. without any extrd
acknowledgments.

These advantages obuain precisely because the facilities for managing virtual circuits and for screen-
ing incoming mes-ages are nof provided by the kernel. By moving these functions into the
language run-ume package. SODA and Chrysalis allow the implementation to be tuned specifically
to LYNX. [n additon, by maintaining the flexibility of the kernel interface thev permit equall
efficient implementitiors of a wide variety of other distributed languages. with entirelv different
needs.

It should he emphasized that Charlotte was not originally intended to support a distributed
programming langzuage. [ tke the designers of most similar systems. the Charlotte group expected 1
applications to be written directly on wp of the kernel. Without the bencfits of a high-level
language, most programmers probably would prefer the comparatively powerful tacihities of Char-
lotte to the comparatively primitive facilities of SODA or Chrysalis. With a language however, the
level of abstraction of underlying software is no longer of concern to the average programmer.

For the consideration of designers of future languages and systems. we can cast our experi-
ence with LYNX 1n the form of the following three lessons:

Lesson one: Hints can be better than absolutes.
The maintenance of consistent, up-to-date. distributed information is often more trouble than
it is worth. [t can be considerably easier to rely on a system of hints. so long as they usually
work. and so long as we can tell when they fail.

The Charlotte kernel admits that a hink ¢nd has been moved only when all three parties agree.
The protocol for obtaining such agrecment wdas a major source of problems in the kernel. par-
ticularly in the presence of failures and simuitaneously-moving ends [3]. The implementaton
of links on top of SOIIA and Chrysalis was comparatisely easy. It is likely that the Charlote
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kernel itself would be simplified considerahbly by using hints when moving links.

Lesson two: Screening belongs in the applicauon laver.

Everv reliable protocol needs top-level acknowledgments. A distributed operating system can
attempt to circumvent this rule by allowing a user program to describe in advance the sorts of
messages it would be willing to acknowledge if they arrived. The kernel can then issue ack-
nowledgments on the user’s behalf. The shortcut only works if failures do not occur between
the user and the kernel. and if the descriptive facilities in the kernel interface are sufficient
rich to specify preciscly which messages are wanted. In LYNX. the terminauon of a coroutine
that was waiting for a replyv can be considered to be a “failure™ between the user and the ker-
nel. More important. the descriptive mechanisms of Charlotte are unable to distinguish
between requests and replies on the same link.

SODA provides a very general mechanism for screening messages. Instead of asking the user
to describe 1ts screening tunction. SOIDA allows it to provide that function itself. In effect. it
replaces a static description of desired messages with a formal subroutine that can be called
when a message arrves. Chrysalis provides no messages at all. but s shared-memory opera-
tions can be used w build whatever style of screening is desired.

Lesson three: Simple primitives are best.

From the pomnt of view of the language implementor, the “ideal operating system™ probably
lies at one of two extremes: it either provides everything the language needs. or else provides
almost nothing. but in a flexible and efficient form. A kernel that provides some of what the
language needs. but not all. is likely to be both awkward and slow: awkward because it has
sacrificed the flexibility of the more primitive system. slow because it has sacrificed its simpli-
city. Clearly. Charlotte could be modified to support all that . YNX requires. The changes.
however. would not be trivial. Moreover. they would probably make Charlotte significantly
larger and slower. and would undoubtedly leave out something that some other language
would want.

A high-tevel ntertace is only useful to those applications for which its abstractions are
appropriate An application that requires only a subset of the features provided by an under-
lving laver of software must generally pay for the whole set anyway. An application that
requires features Audden by an underhing laver may be difficult or impossihle to build. For
general-purpose computing g distributed operating system must support a wide variety of
languages and applications. In such an environment the kernei interface will need to be rela-
uvely primitive
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